
Adding Terrain Rendering
Capability to the Starbreeze Engine

Jim Tilander Andreas Brinck

April 23, 2001

Abstract

We have created a terrain rendering plug-in for the Starbreeze 3D-engine. The plug-in uses a
static level of detail scheme to reduce the geometrical complexity of the landscapes far away from
the viewer. We use the concept of texture layers to enable detailed variations in the appearance
of the surface.

We have also created a plug-in for the existing editor to enable simple editing of the land-
scapes.

Sammanfattning

Vi har skapat en insticks-modul till Starbreeze 3D-motor för att rita terräng. Modulen använder
statiska detaljnivåer för att reducera landskapens geometriska komplexitet långt bort från betrak-
taren. För att möjliggöra detaljerade variationer i ytans utseende använder vi oss av konceptet
texturlager.

Vi har också gjort en modul till den befintliga editorn för att enkelt kunna editera landskapen.

Preface

Acknowledgments

We would like to thank Magnus Högdahl and Jens Andersson at Starbreeze Studios for
invaluable help and insights into the Starbreeze engine and Ogier.
We would also like to thank the CyberLoop team for hosting us during the work.
Finally we thank our supervisor Magnus Bondesson.

i

ii

Contents
1 Introduction 1

1.1 Organization of the Paper . 1

2 Theory 1
2.1 A Survey of Current Dynamic LOD Algorithms . 1

2.1.1 ROAM . 1
2.1.2 The Lindstrom Algorithm . 4
2.1.3 Other Algorithms . 5

2.2 Texturing . 5
2.2.1 Tile Algorithm . 5
2.2.2 Multipass Algorithm . 6

2.3 Triangle Stripping . 6
2.3.1 Heuristics . 6

3 Implementation 7
3.1 Engine . 7

3.1.1 A Short Description of the Starbreeze Engine 7
3.1.2 LOD management . 7
3.1.3 Physics . 8
3.1.4 Texturing . 9
3.1.5 Dynamic lighting . 10
3.1.6 Wallmarks . 11
3.1.7 Optimization Techniques . 11

3.2 Editor . 12
3.2.1 A Short Description of Ogier . 12
3.2.2 Terrain Generation . 12
3.2.3 The Paint Tool . 14

4 Results and Discussion 15
4.1 Related work . 15
4.2 Future work . 17

4.2.1 Non Height Field Terrain . 17
4.2.2 Deformable Terrain . 17
4.2.3 True Dynamic Lighting . 17
4.2.4 Quad Tree LOD . 17
4.2.5 Disk paging system . 17

References 18

A Ogier Manual 19
A.1 Create Dialog . 20

A.1.1 Heightmap Filename . 20
A.1.2 Landscape Properties . 20
A.1.3 Layers . 21
A.1.4 Lod Steps . 21

A.2 Generation Dialog . 21
A.3 Alphamask Dialog . 22
A.4 Paint Tool . 23
A.5 Import Dialog . 25
A.6 Export Dialog . 26
A.7 Hints and Tips . 26

iii

iv

1 Introduction
Rendering natural looking landscapes has been the focus of a lot of research in recent years.
A substantial part of the research has been funded by the U.S. military for developing flight
simulators capable of rendering realistic terrain (as in [1]). In the past two years the technology
for rendering the huge amount of triangles needed in real time has become available in standard
PC’s1, further increasing the interest for terrain rendering.

The game developers Starbreeze Studios have a very advanced game engine in development.
The engine didn’t however include any capabilities to render large landscapes. They deemed it
necessary to have this in their engine, mainly for future projects.

1.1 Organization of the Paper
This paper is divided into three parts: theory, implementation and discussion. In the theory part
we will briefly describe some algorithms that are useful for terrain rendering. The implemen-
tation part of the paper gives a detailed description of the work done by us in adding terrain
rendering capabilities to the Starbreeze engine and in the discussion part finally we will share
some of the insights we gained during the project and describe some of the problems we ran
into.

2 Theory
Realistic rendering of large scale terrain models poses a lot of interesting problems. In the fol-
lowing section we will discuss two of the main ones: detail reduction and seamless texturing. We
will also briefly describe a method to speed up the rendering called triangle stripping.

2.1 A Survey of Current Dynamic LOD Algorithms
We will present a small selection of algorithms that are currently being used for terrain rendering
and their respective strengths and shortcomings. All of these algorithms share one common
characteristics, they work with a regular grid polygonization representation of the surface i.e. the
terrains height is sampled on a regular grid and from this information a surface is constructed.

This representation has one serious flaw, it is unable to correctly represent some terrain fea-
tures such as caves and overhangs, still it is the de facto standard. There is a vast library of real
world Digital Elevation Maps, or DEM’s for short, available in this format. Most of the terrain ren-
dering algorithms were originally aimed at various aircraft simulators and on the spatial scale
that these simulators work caves and overhangs are neglectable; most DEM-files are sampled on
an interval of 50 meters or more.

The datasets associated with terrain rendering are usually huge, a patch of terrain 50 km on
each side will consist of roughly 2 million triangles, which is unfeasible to render at an interactive
framerate even on the most high end machines. The purpose of these algorithms is to reduce the
triangle count to an acceptable level. From information about the observers position and the ter-
rains topology the algorithms construct an approximate representation of the surface, details are
removed far from the viewer and where the curvature of the landscape is low. These calculations
are done on a per frame basis, hence the name dynamic LOD. For really large terrains it is neces-
sary to implement a disk paging system for the terrain data, but this is an advanced problem in
itself and will not be covered here.

2.1.1 ROAM

ROAM is an abbreviation for Real-time Optimally Adapting Meshes and was first presented in [1].
Since it is the foundation of our terrain engine it will be presented in some more detail than the

1E.g. the NVidia GeForce family of processors

1

rest of the algorithms.

Binary triangles ROAM uses a partitioning scheme referred to as binary triangle tree. Each tri-
angle can have two congruent children that are created by bisecting the triangle along its longest
edge, see Fig. 1.

l = 1

l = 2 l = 3

l = 0

Figure 1: The first four levels of the binary triangle tree.

Each triangle stores five pointers, left, right, base and left and right child, see Fig. 2.

Base

Left Right

Left child Right child

Figure 2: Triangle pointers.

The initial triangulation of the landscape is constructed by creating two binary triangles and
linking their bases to each other. All the other pointers are initially set to NULL.

Splitting Before we continue we notice that the base neighbor of a binary triangle is either
located on the same level as the triangle or one level up, see Fig. 3.

T0

TB

T0

TB

Figure 3: The two possible neighbor arrangements.

2

If the base neighbor of a triangle we wish to split is located on the same level, the operation
is easy. We just create two new children for each of the triangles and initialize their pointers, see
Fig. 4.

T0

TB

T0Left

T0Right

TBLeft

TBRight

Figure 4: Split operation.

If the base neighbor is not on the same level we first apply the split function on it. Since there
is no guarantee that the base neighbors base neighbor is on the same level as the base neighbor
further recursive calls to split may have to be made until we reach a triangle who’s base neighbor
is on the same level as itself, this operation is referred to as force splitting, see Fig. 5.

T

Figure 5: Recursive force splitting of T.

Splitting criteria To determine if a triangle needs splitting we construct a pie shaped bounding
volume, a so called wedgie. The height of a triangle T’s wedgie is set to 2 · δ = 2 ·Max(| f (x, y)|)
where x, y ∈ T, see fig. 6.

δ

δ

Figure 6: Wedgie.

If we project the wedgie as it is seen by an observer onto the screen we get an error in pixels
that is of the magnitude C ·δ/d, where d is the distance from the observer to the wedgie and C is a

3

constant that depends on the screen resolution and the current field of view. The error naturally
also depends on the orientation of the wedgie. The error will be more prominent if we look at the
wedgie from the side than if we look at it from above. We ignore this fact and assume that the
wedgie is oriented in the worst possible way to get an upper limit for the error.

Split Queue The authors of [1] suggest that one maintains a priority queue where the triangles
are ordered by screen error. When a triangle is split it is removed from the queue and it’s two
children are inserted. We keep splitting triangles until the total number of triangles meet some
target count, we will then have acquired the optimal representation of the terrain given that
number of triangles.

Merge Queue If the viewpoint is moving slowly we can expect the triangulation to be approx-
imately the same between two consecutive frames. To utilize this frame-to-frame coherence we
can create a merge priority queue where we keep a list of mergable diamonds2. By merging tri-
angles in the merge queue and splitting triangles in the split queue we can obtain a new optimal
triangulation. We don’t reevaluate the priorities in the merge and split queue between frames
but hope that they change so slowly that we can reuse the priorities from the previous frame.

Variations There exists a risk with the priority queue strategy. If the framerate drops for some
reason the position of observer will be considerable different between frames, which will in turn
disrupt our assumption that the triangulation stays approximately the same. We thus need to
make a lot of split and merge operations to correct the triangulation. These time consuming
operations will further reduce the framerate. We have entered a vicious circle that will eventually
drop the framerate to zero.

A common variation of ROAM that solves this problem is the described in [16] and [3]. In-
stead of maintaining a priority queue and specifying a target triangle count we can start with
the basic triangulation and specify an acceptable error tolerance and keep triangulating until this
tolerance is met.

2.1.2 The Lindstrom Algorithm

The Lindstrom algorithm, described in [2], works in nearly the opposite way of the ROAM al-
gorithm. Instead of starting with a coarse triangulation and adding triangles until a specified
tolerance or triangle count has been met, Lindstroms algorithm starts with the finest triangula-
tion and then successively removes vertices. For this reason Lindstrom is often referred to as a
bottom-up algorithm and ROAM as a top-down.

Since the algorithm involves looking at all the triangles in the finest subdivision of the surface
it is computational expensive. To reduce this cost the terrain is divided into subblocks that are
each stored in a number of different resolutions. At the beginning of a frame the algorithm
makes a rough estimate to decide which resolution is appropriate to start with on each block.
The different resolution blocks are not stored explicitly, a coarser resolution block is obtained by
removing every other row and column from a finer resolution block.

The Lindstrom algorithm uses a simpler formula than the ROAM algorithm to estimate the
error. Where the ROAM algorithm looks at the difference between the current triangulation and
the finest possible triangulation, the Lindstrom algorithm only examines how much the terrain
is changed by going from the current triangulation to the next. This method has the advantage
of not requiring any additional storage. The fact however is that since the introduction of ROAM
the use of Lindstroms algorithm has declined severely.

2A diamond is the set of four triangles that results from the type of split shown in fig. 4

4

2.1.3 Other Algorithms

In [15] a method is presented that can be described as geometrical mip maps. The terrain is divided
into squares and for each of these multiple representations, levels, with different level of detail are
saved. Each level has dimensions of the form 2n +1 which are used when the square is at certain
predetermined distances from the observer. A square can only be adjacent to a square that is on
the same or one level less. To connect two squares that differs one level, every other vertex on
the edge of the higher level square is removed.

2.2 Texturing

Handling dynamic triangulations and texture mapping involves a couple of problems. Since the
triangulation may change at any time we must have some way to adapt the texture coordinates.
A naive algorithm is to use a very large texture for the whole landscape. One of the drawbacks is
that the resolution of the texture will suffer since the texture is severely constrained by the texture
memory available on the graphics card. If one moves the camera relativly close to the terrain the
low resolution will result in very large texels stretched across the triangles.

2.2.1 Tile Algorithm

One solution is to use a set of tiles. The tile themselves need to have a decent resolution, but clever
use of tiles should result in heavy reuse and thus require less texture memory on the graphics
card. This will enable higher resolution tiles, which will improve image quality. However, there
are a number of problems with this approach. Consider Fig. 7. In the figure, the grid squares
are the tiles. The triangle A is clearly larger than the one individual tile, whereas all triangles
in triangle group B are smaller than one individual tile. It’s impossible to map a single tile onto
the triangle A, and since the tiles covered by the triangle could be any combination, we would be
forced to assemble a larger image at runtime and upload it to the graphics card in order to texture
the triangle. So the only viable option is to make sure that this never happens, which effectively
limits all triangles to fit within a tile. This might not sound so bad, but consider the most extreme
case of the ROAM triangulation, a completely flat surface. ROAM should do a pretty good job
of triangulating this with simply two triangles. It would then be forced to continue splitting the
triangles until they all are smaller than an individual tile, i.e. wasting a lot of triangles because of
the texturing scheme which could have been saved if it merely was a matter of geometry.

Triangle A

Triangle group B

Figure 7: Different triangle sizes in a grid

5

Another problem with the tiles is how to handle tile transitions. Usually one has a tile set
which consists of a palette of tiles we can use. Assume that we have n different materials in
this tile set. Furthermore, lets assume that we assign materials to the vertices, instead of the tile
itself. To handle all transitions we need n4 different tiles. Of course, we can reduce this number
somewhat by disallowing some transitions and using a lookup table which given four materials,
one for each corner, returns an appropriate tile.

2.2.2 Multipass Algorithm

By introducing the concepts of layers we can trade speed to solve the texture mapping problems.
A layer consists of an alpha mask and a detail texture. The alpha mask covers the whole terrain
and the detail texture is repeated across the terrain. The alphamask texture doesn’t have to be
a high resolution texture to achieve good results. The most important thing is the detail texture
that will be visible when you zoom in close to the landscape.

This technique requires a multitexture unit in hardware, in order to blend the detail texture
and the alphamask together. One can stack several layers upon each other and blend them to-
gether, enabling smooth transitions between sand, grass and stone for instance, thus making it
easy to create a beach without resorting to an endless set of different texture tiles, see Fig. 8.

Figure 8: Rock, grass and an alpha channel are blended together.

2.3 Triangle Stripping
One great way to speed up the rendering is to replace the individual triangles with triangle strips.
Sets of individual triangles requires 3 · n vertices to be transformed, where n is the number of
triangles, while triangle strips require only n +2 transformations. Most modern rendering API:s
such as Microsoft’s Direct3D and OpenGL [11] supports triangle stripping.

It is clear that the longer strips we can create the bigger the gain is. Hence we need an al-
gorithm that takes a list of individual triangles and constructs and optimal set of triangle strips
from it. Unfortunately it can be shown that the construction of such a set is NP-Complete, for a
detailed presentation see [10].

2.3.1 Heuristics

Fortunately because of the importance of the problem many heuristics for creating good strips
have been developed. We choose the method described in [6]. It is essentially a greedy algorithm
that chooses the next strip as the one that shares the most vertices with previous strips. The
purpose of this is to minimize the number of isolated triangles.

We have made some further optimization that takes the cache on the Graphics Processing Unit
into account. This will be explained in detail in the implementation section of this report.

6

3 Implementation

Here we will describe the terrain algorithm that we have implemented and some of the peripheral
problems that have come up during the development.

3.1 Engine

The Starbreeze Engine consists of two stages, compilation and game. During compilation infor-
mation is gathered and transformed into a streamlined format suitable for the actual game. As
much precalculation as possible is done in the compilation phase. In the game only a small subset
of the code is active, just for rendering and physics.

3.1.1 A Short Description of the Starbreeze Engine

The Starbreeze Engine utilizes the Object Oriented Programming, OOP, paradigm, with a strict
inheritance tree. Almost everything inherits a single object which keeps track of the class name,
enables reference counting and error tracking. The engine was originally designed to handle both
PC and the SEGA Dreamcast. On the PC, several graphics API’s are supported, GLIDE, OpenGL
and DirectX. The engine consists of four major parts, MOS, MCC, XR and Game:

• MCC. Moose Core Classes. These classes provides the basic functionality like matrix han-
dling classes, I/O wrappers, data structures like lists etc.

• MOS. Moose OS. Wrapper around the operating system. Handles interaction with graphics
hardware, disk access.

• XR. eXtended Reality. Handles rendering and physics of objects in the world.

• Game. The actual game code, i.e. server and client code.

We’ve mostly worked against MOS, MCC and XR in our implementation.

3.1.2 LOD management

We use binary triangles [1] to build a triangulation based upon a specified error tolerance. The
bintriangle structure has some impact on the overall structure, such as constraints on patch di-
mensions etc. Bintriangles combines the area covering properties of a quadtree with the familiar
properties of a binary tree and all in all proves to be a very useful data structure.

The initial test implementation used a dynamic LOD algorithm in real time based upon each
triangle’s distance from viewer, see Fig 9. Benchmarking 3 yielded approximately 12000 triangles
at 30 fps, i.e. 0.36 MTri/s, which is quite on par with current implementations (e.g. [16]).

3Tests were performed on a dual P3 600MHz with a GeForce 32DDR. Implementation was completely unoptimized.

7

Figure 9: ROAM like dynamic LOD. Notice that the observer is facing northwest, and that the mesh is
noticeably sparser outside the frustum.

The ROAM algorithm is almost the direct opposite of a hardware graphics accelerator friendly
way of drawing scenes. The scene changes constantly, at worst each frame. Since possibly all tri-
angles are recalculated for each frame, they must also be uploaded to the card each frame, which
consumes a lot of precious bandwidth between host and graphics adapter. The test implementa-
tion showed this to be all too true. At no time was the triangle pipeline on the graphics card full,
the potential of the card was never utilized.

The keyword for today’s PC graphics accelerators is static geometry, geometry that the card can
somehow lock and/or load to faster memory local to the graphics processor. ROAM’s approach
to change the geometry each frame will simply not do.

In the next phase we moved the triangulation engine we used in real time to the world com-
piler and precalculated a number of static LOD steps for each patch in the landscape.

The only calculation made at runtime is the distance from patch to viewer that is necessary to
determine the appropriate LOD step to use in the current frame.

3.1.3 Physics

Since the terrain engine was implemented as a plug-in it had to support the same functionality
as the rest of the Starbreeze engine. One of the things that makes the Starbreeze engine stand out
is it’s excellent support for realistic rigid body physics. For this to work on the terrain it had to
implement three functions:

• Moving point, i.e. line, intersection

• Moving sphere intersection

• Moving OBB, Oriented Bounding Box, intersection

Since the landscape contains many hundred thousands of triangles we had to come up with
a way to determine which ones we had to check for intersection for a given line, sphere or OBB.
Our first approach was to recursively check against the bounding wedgies of the binary tree
representing the terrain. If a primitive intersected one of these wedgies it was sent on to the

8

the two children’s wedgies. This process was repeated until the primitive reached one of the
tree’s leafs. Since the primitive typically reached many leafs a list of the closest intersection was
maintained.

When we removed the dynamic LOD algorithm the data for the bounding wedgies of the
binary tree was only used for the intersection functions; since this data was typically very large,
16 Mb for a landscape 1000 units in square, we began looking for alternative ways to do the in-
tersection so that we could remove the wedgie data completely. The solution we found turned
out to be much simpler and in the end several orders of magnitude faster than the original solu-
tion. We used the property that the height of the landscape is sampled on a regular grid in the
xy-plane. By projecting the bounding volume of the moving primitive on the xy-plane on which
the landscape is sampled we could directly see which triangles that had to be checked, see Fig.
10.

Figure 10: Intersection with moving bounding box. The dark gray area is the projection of the bounding
volume and the light gray area is the triangles that need checking.

3.1.4 Texturing

We have used the multipass technique described in the theory section to allow us to use any
triangulation on each patch. To minimize the impact of the layers, we’ve tried to reduce the
overhead and excess triangles used in each layer. Triangles that don’t change the final image are
discarded during the compile phase, e.g. a triangle at layer 0 is completely covered by a triangle
at layer 1, and need thus not be drawn at all. In the most extreme case there are no triangles
at all in one patch in a particular layer, and we don’t need to make any setup (i.e. request that
an empty vertex buffer and it’s associated textures may be swapped from main memory to the
graphics card’s memory). This enables an artist to make a layer that represents a trail for example,
and only pay the cost of the actual triangles necessary to describe it, which boils down to that we
only pay for what we use on the screen.

One problem with texture mapping such a huge landscape is how one assigns texture coordi-
nates to each vertex. We’ve solved it by allowing the user to specify one of three planes - XY, XZ
or YZ - on which the texture coordinates will be projected upon for each layer. A XY mapping
means that the X and Y component of the vertex itself are used to calculate the U,V component
of the texture coordinate. This extends to the XZ and the YZ case as well.

9

0 2 4 6 8 10 12 14 16 18

0

20

40

60

80

100

Side view of a sharp edge

Vertex

H
ei

gh
t

Sharp Edge

Smooth Edge

Figure 11: A cross section of a sample landscape with a sharp edge, to the left and a smoother edge to the
right.

This enables the user to add a layer with triangles only visible on very steep edges in the
landscape to compensate for the stretching effect that a normal XY mapping will produce, i.e.
on a very steep edge the texture coordinates of the two adjacent vertices will be very close to
each other, even mapping to the same texel in the texture map resulting in only one texel being
stretched along the whole edge, see the left edge in fig. 11. The solution is to mark the vertices in
a layer and specify a different mapping, either XZ or YZ, to make the wall look good.

3.1.5 Dynamic lighting

Like most other 3D engines on the market the Starbreeze engine uses light maps to display light
variations in the virtual world. A light map is essentially a texture that contains information
about the luminosity of each point in a surface. Normally the light map is rendered first and
afterwards a texture containing information about the color variations of the surface is rendered
over it with multiplicative blending, see fig. 12.

Figure 12: Blending of texture and light map.

Dynamic lighting is created by adding a special texture with the additional light informa-
tion on top of the existing light map. Unfortunately, this is not possible on the terrain since the
operation we would like to perform,

10

(

Λ+
n

∑
i=0

Λ̃i

)

·

(

m
∑
j=0

Tjα j

)

where α j and Tj represents the texture and alpha mask for stage j and Λ and Λ̃i represents static
and dynamic light maps. Unfortunately this operation is not available on most of the current
crop of 3D accelerators. If we remove the dynamic light Λ̃ we can solve the problem by first
drawing all the textures with additive blending and afterwards draw the lightmap on top with
multiplicative blending. To get dynamic light we directly modify the static light map. Since a
dynamic light normally affects only a small part of the light map we split it into smaller pieces to
minimize the amount of data that has to be sent over the bus to the graphics card when the light
situation changes.

3.1.6 Wallmarks

The Starbreeze engine uses a technique commonly known as wallmarks to achieve a number of
effects such as real time model shadows, bullet holes and blood stains. A wallmark is simply
a polygon rendered at the same position (with a slight offset to avoid Z-buffer artifacts) as the
underlying surface. With some alpha blended texture mapping it is simple to create effects such
as bullet holes.

Since the triangulation can change when switching between LOD levels, the wallmarks must
be aware of the different LOD levels, and where exactly the triangles are to be placed. An incom-
ing wallmark is simply a quadrangle. The wallmark is clipped against the triangles it covers in
the particular LOD level it will show up in. The clipping is done with the help of a simplified
binary triangle tree.

3.1.7 Optimization Techniques

To further speed up the program we have made a number of optimizations that will be described
in some detail below.

Hardware Accelerated Geometry A typical landscape needs about 10kTri - 20kTri to describe
it on the screen, a huge amount of triangles for today’s middle end PC’s. These triangles will
compete for time and bandwidth on both the CPU and the graphics card with the rest of the
Starbreeze engine.

Recently the hardware geometry processors previously only found in high end workstations
from Silicon Graphics and Intergraph for instance have found their way to standard IBM-PC com-
patibles. Graphics programming with an on board processor aka GPU4 has somewhat different
rules. Triangle count is still very important, but equally important is memory management. This
includes issues like vertex caching, cache trashing and display lists amongst others.

The onboard GPU has many tasks, one of them is to transform all vertices to view coordinates,
which involves a matrix vector multiplication.

The NVidia GeForce chipsets have a cache of transformed vertices, henceforth called vcache,
which is about 12 vertices. A cache hit on one of these vertices avoids a full transform, and the
need to go through the memory bus. It is thus extremely important to keep the vcache happy.
The size of the vcache sets restrictions on the length of any vcache friendly triangle strip. The
idea is to make two adjacent triangle strips share as many vertices as possible to make maximum
use of the vcache. This fact has been incorporated into our triangle strip generator. As it hap-
pens, the structure of the binary triangle tree provides a near optimal drawing order as well if
you draw the triangles as you encounter them traversing the tree in depth first order. Our first
triangle stripping algorithm didn’t take the vcache into account and was thus slower than draw-
ing individual triangles as they were encountered in the binary tree. Without consideration of

4Graphics Processing Unit, as NVidia calls it

11

the vcache, rendering with triangle strips instead of triangles actually slows down the rendering
process noticeably.

Triangle Removal To reduce the number of triangles in each layer of the terrain we have im-
plemented an algorithm that removes non visible triangles. There are two reasons why a triangle
can be removed from a layer:

• The alpha value of the entire triangle is below some threshold value ∼ 0.0 and the triangle
is thus considered as non visible

• The alpha value of the entire triangle in a layer above the current one is above some thresh-
old value ∼ 1.0 and thus obscures the triangle in the lower layer.

To check the alpha coverage of a given triangle we essentially need a triangle rasterizer, but
to simplify the code we just check the bounding rectangle. This works fine as long as the neigh-
boring triangles have the same alpha value, which will nearly always be the case. The only time
where the values are not the same is in the border zone between low and high alpha values in
which case the extra border will help to prevent visible seams where the triangles have been
removed.

Generation of Texture Coordinates Texture Coordinate Generation enables us to express the
texture coordinates as a linear combination of the components of the vertex. This means that
we will only have to load the actual vertex from memory, any set of texture coordinates can
be calculated internally. With a little help from the memory cache, or smart register usage, the
coefficients for the linear combination could be accessed at minimal cost.

This has two large benefits. Firstly, on board memory hit on the graphics card is minimized.
Secondly, the system memory requirements are drastically reduced.

3.2 Editor

To make the integration of ordinary geometry and the landscape geometry easier the landscape
editing tools were implemented as a plug-in to the existing Starbreeze editor Ogier. This choice
was also made so that the graphics artists wouldn’t have to switch between different programs
while they were working.

3.2.1 A Short Description of Ogier

Ogier uses a representation of the scene usually called a scene graph. All information about the
scene, transformations, geometry, modifiers etc, is stored in the nodes of a Directed Acyclic Graph
or DAG for short.

If a node contains a transformation matrix for instance this transformation will be applied to
all the children of the node.

Ogier shares much of it’s code with the actual Starbreeze engine.

3.2.2 Terrain Generation

One of the requirements of the editor was that it should be able to automatically generate be-
lievable terrain. When we created the terrain generation module we looked a lot at Matthew
Faircloughs excellent shareware scenery rendering program Terragen [7]. Although Terragen was
designed with a different goal than ours in mind we were able to borrow many ideas from it.

12

Figure 13: A picture generated with Terragen.

Perlin Noise Just like Terragen we use Perlin noise [5] to generate the terrain. Perlin noise was
created by Ken Perlin of New York University in the middle of the eighties. It is a way to con-
struct controllable noise that can be used to create two and three dimensional textures. Textures
generated in this way are called procedural textures. Procedural textures are nowadays the de
facto standard for high quality rendering. Unlike regular textures they have infinite resolution
and keeps exhibiting new detail as one zooms in on them. Nearly all the computer graphics in
major Hollywood pictures are created with Pixar’s rendering library Renderman [8], a library that
uses Perlin noise to create textures.

If we look closely at some natural phenomenas we will see that they all exhibit a common
property, they are a combination of large and small features. If we zoom in we will see that the
features are repeated but on a much smaller scale. This self similarity was studied by Benoit
Mandelbrot who coined the word fractal [9] to describe it.

It is this property that is the foundation of Perlin noise. Noise is synthesized by adding a
sum of random functions with increasing frequency and decreasing amplitude, see Fig. 15. The
random functions are constructed by assigning random values to the points lying on multiples
of the wavelength and smoothly interpolating between them, see Fig. 14.

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5
Random function

Figure 14: A smooth random function. The circles indicate the random points.

13

Generally the frequency is doubled between two consecutive functions and each function is
hence known as an octave. The factor by which the amplitude is decreased is in Terragen defined
as persistency, a value of 0.5 gives good results.

0 20

−1

0

1

Octave 1

0 20

−1

0

1

Octave 2

0 20

−1

0

1

Octave 3

0 20

−1

0

1

Octave 4

0 20

−1

0

1

Sum

Figure 15: Perlin noise generated with four octaves.

The noise is easily extended into higher dimensions, two and three dimensional noise is con-
structed by assigning random values on a regular grid or lattice respectively.

Since we are dealing with terrain it is natural to construct a two dimensional texture repre-
senting height.

Texturing Now that we have constructed the terrain we would like to assign different materials
to it, such as rock, snow and grass. As we explained earlier we use an extra texture stage to mask
out where different textures should be used and it is these textures that we would like to create.
We do this by introducing two constraints to where a material can exist, a slope constraint and
an altitude constraint. Each material is assigned a minimum and maximum altitude and slope
where it can exist; we could for example say that snow can only exist if the altitude is greater
than 1000 meters and if the slope does not exceed 30 degrees (in which case the snow will slide
of).

3.2.3 The Paint Tool

Since a normal landscape contains hundreds of thousands, even millions, of vertices it would be
very tedious and time consuming to construct a landscape by adjusting each of them individually.
We clearly need a tool that can manipulate the terrain on a larger scale while still maintaining the
ability to adjust the smaller details. After looking at the terrain editor for a game called Earth
2150 [13] and talking with some of the artists that would be using the program we opted for a
paintbrush analogy. This way of working is currently making a great impact in the 3D modeling
community by the introduction of Maya Artisan [14] which also works in this fashion.

By making strokes with the mouse in the 3D view of the editor the user can adjust the height
of the landscape. The brush can also be used to paint textures on the landscape in an intuitive
manner. The paint tool is very flexible and has several adjustable properties, such as size and
sharpness, which are described in detail in the user manual.

14

4 Results and Discussion
From the beginning our goal was to implement a competitive landscape engine that would be
capable of rendering immense landscapes in real time. Since some type of LOD algorithm obvi-
ously seemed the way to proceed, we made a test implementation with a ROAM like algorithm
and benchmarked different variations. It soon became very apparent that the speed wasn’t ac-
ceptable. As we came further into the development cycle we had to reconsider whether to use
ROAM at all. Some kind of LOD algorithm was necessary, the sheer amount of triangles we
would be tossing at the rendering API would be staggering otherwise.

So we simply moved the triangulation phase from the rendering phase to the precompilation
phase, thus removing the big CPU hog from the engine. In doing so we accepted a few more
triangles than absolutely necessary, but on the other hand we gained the time to render a whole
bunch of them and still have time left to spare. As an illustration, the unoptimized ROAM algo-
rithm pushed about 0.36 MTri/s and the algorithm using precomputated static LOD steps very
quickly pushed about 5-6 MTri/s, see Fig. 16 and Fig. 17 for two pictures from our implementa-
tion.

The nature of the ROAM algorithm makes it an unsuitable choice for any application that
needs to take advantage of hardware geometry acceleration.

Figure 16: A sample view of a landscape in wireframe mode.

4.1 Related work

Epic Games [18] develops the Unreal Engine, which in version 2 also incorporates a landscape
engine. They’ve solved the texturing problem the same way as we have, with alpha blended
layers. There is not much information avaible but the little there is suggests that the engine does
not use any LOD at all. This has the benefit that one can make better optimizations of the vcache.

15

Figure 17: Same view as in Fig. 16 but with textures.

Figure 18: The landscape engine in Unreal 2

16

4.2 Future work
There are a number of things that we wanted to do but were unable to do because of time and/or
hardware constraints. We will give a short description of some of these features and the impact
they would have on the engine.

4.2.1 Non Height Field Terrain

Instead of storing the terrain as a two dimensional height field we could have stored it as a three
dimensional density field. The terrain surface could then have been implicitly extracted as an
isosurface at a certain density value. There exists a number of algorithms for creating surfaces
from density data but the most commonly used one is described in [17]. With this approach it
would have been possible to create such things as boulders, caves and overhangs.

4.2.2 Deformable Terrain

As it is now the terrain is totally static. It would have been nice to be able to deform the landscape
in real time but this isn’t possible for a number of reasons, the foremost being that we currently
rely heavily on precomputation to construct the different LOD levels. The two dimensional rep-
resentation of the terrain also severely restricts the kind of deformations that are possible, the
only phenomena that can be done are craters and hills.

If we had used a non height field terrain as described above it would have been possible to
drill a tunnel through a hill for example.

4.2.3 True Dynamic Lighting

Tightly coupled with deformable terrain is true dynamic lighting. It would also have been nice
to be able to make a smooth transition between day and night. The authors of [3] has solved
this by precomputing the light maps for a number of times of the day. To reduce the memory
consumption these are stored with wavelet compression.

4.2.4 Quad Tree LOD

For patches with sufficiently high tolerance, and thus low triangle count, the cost of handling
the patch itself might be more than the actual cost for the drawing of the triangles. The idea
with a Quad Tree for LOD levels is to collect a bunch of patches and create a much larger patch.
Naturally one have to downsample and combine the alpha masks as well to minimize the texture
switches. Since the patches are far away from the observer anyway, the lower resolution will not
be that prominent.

4.2.5 Disk paging system

One very real constraint in the system today is the available system memory. If one wants to
create truly immense landscapes the avaible system memory will be a hard barrier. Using virtual
memory isn’t an option, since a) it’s not available on the consoles, and b) it’s rather non-optimal
for this purpose. We have to use a disk paging system tailored for patches. Here we can use a
quadtree as well for quick lookup of patches and load them a little before they are needed.

17

References
[1] M. Duchaineau, M. Wolinsky et al, ROAMing terrain: Real-time optimally adapting meshes,

Proceedings of the ACM Symposium on Volume Visualization 1997, pp. 81-88, Oct 1997.

[2] P. Lindstrom, D. Koller et al, Real-Time, Continuous Level of Detail Rendering of Height Fields,
SIGGRAPH 96 Conference Proceedings, pp. 109-118, Aug 1996.

[3] J. Blow, Terrain Rendering at High Levels of Detail, Game Developers’ Conference 2000, San
Jose, California, USA.

[4] S. Röttger, W. Heidrich et al, Real-Time Generation of Continuous Levels of Detail for Height
Fields, Technical Report 13/1997, Universität Erlangen-Nürnberg.

[5] K. Perlin, An Image Synthesizer, Computer Graphics, Vol. 19 No. 3, pp. 287–296, July 1985.

[6] F. Evans, S. Skiena, A. Varshney, Optimizing Triangle Strips for Fast Rendering, IEEE Visualiza-
tion ’96, pp. 319–326.

[7] M.P.Fairclough, Terragen, www.planetside.co.uk, 2001.

[8] Renderman, www.pixar.com/products/renderman/products/index.html.

[9] B. B. Mandelbrot, The Fractal Geometry of Nature, New York, NY: W. H. Freeman and Com-
pany, 1982.

[10] E. Arkin, M. Held et al, Hamiltonian Triangulations for Fast Rendering, Second Annual Eu-
ropean Symposium on Algorithms, Vol. 855, pp. 36–47, Springer-Verlag Lecture Notes in
Computer Science, 1994.

[11] M. Woo, J. Neider, T. Davis, OpenGL 1.2 Programming Guide, Third Edition: The Official Guide
to Learning OpenGL, Version 1.2, Addison-Wesley, 1999.

[12] S. Dietrich, Optimizing for Hardware Transform and Lighting, Presentation from the Xtreme
Game Developers Conference 2000.

[13] The Learning Company, Earth 2150, www.earth2150.com.

[14] Alias Wavefront, Maya, www.aliaswavefront.com/en/WhatWeDo/maya/index.shtml.

[15] W. H. de Boer, Fast Terrain Rendering Using Geometrical MipMapping. E-mersion Project, Oct
2000

[16] B. Turner, Real-Time Dynamic Level of Detail Terrain Rendering with ROAM,
www.gamasutra.com/features/20000403/turner 01.htm.

[17] W.E. Lorensen, H.E. Cline, ”Marching Cubes: a high resolution 3D surface reconstruction
algorithm,” Computer Graphics, Vol. 21, No. 4, pp 163–169, 1987.

[18] Epic Games, Unreal, www.epicgames.com

18

A Ogier Manual
This manual will guide the user through the process of creating and editing a new landscape
from scratch in Ogier. It is assumed that the user is somewhat familiar with Ogier itself, and
some basic terminology.

Figure 19: A sample Ogier session with a landscape.

Figure 20: Parameter for the external data file.

First we need to create a new landscape model object. Press the insert key and choose the
landscape model. A default arrow will show up to indicate that no landscape has actually been

19

created. At this point it is a good time to set the auxiliary datafile for the landscape. This is where
the world compiler will store all data needed for the engine. Add a colon ’:’ and the file name
after the Landscape in the Model Edit box as shown in Fig. 20.

A.1 Create Dialog

Now we need to actually create the landscape. Press the Create button to bring up the create
dialog. The create dialog contains a number of input fields, which are explained below.

Figure 21: The create dialog.

A.1.1 Heightmap Filename

Indicates the filename relative to the game path5 where Ogier will save/load binary data such as
height field and alpha masks.

A.1.2 Landscape Properties

Resolution Specifies how many height points we want along one edge of the landscape.
The number must be of the form 2n +1, where n is a natural number.

Squaresize Specifies how many units there are between two adjacent height points.
Maxheight Set’s a “playing ground” for the landscape, any height point exceeding the

maxheight is cropped. Negative heights are disallowed.
Patchsize Specifies the size of each patch in Quadrangles. Must be of the form 2n.

5The Starbreeze Engine uses a game path relative to the executable sbzengine.exe to locate all data files

20

A.1.3 Layers

Enter the number of layers and the initial size of each layer’s alphamask. The width and height
must result in a texture for each patch that is of the form (2n, 2m), where n,m are natural numbers.
See the hints and tips section of the manual for more information on how to choose the size of
the layers.

A.1.4 Lod Steps

Steps How many static LOD steps we want.
Min Distance Where, in units, we want to use the finest LOD step.
Max Distance Any patch further away will use the coarsest LOD step.
Min Tolerance A guideline for the tolerance to use at the finest LOD level.
Max Tolerance This value is currently unused.

A.2 Generation Dialog

To quickly generate a natural looking landscape, this dialog provides an interface to a Perlin
generator. Simply put, the Perlin generator will produce natural looking noise between 0 and 1
and rescale it so that it fits in the range [Start Height, Height]. The combine options control how
Ogier will use these values on the existing height field.

Figure 22: The generate dialog.

The rest of the values control how the height points will be generated. They are:

21

Octaves As depicted in Fig.15, the higher order octaves contain finer noise, whereas
the lower octaves contains the big smooth curves.

Start Octave Don’t use the octaves preceding this one.
Power The output from the Perlin generator is raised to this power. A higher value

here will result in more prominent peaks.
Persistency Must lie in the range [0,1]. Controls the sharpness of the noise. A low value

will produce smooth hills, a high will generate sharper heights.
Seed The Perlin generator uses the system random routine, and it can be seeded

with an integer to produce a different pseudo random number series.

The interface presented here is very powerful and with a little experimenting, it’s rather easy
to create the effects that you want.

A.3 Alphamask Dialog

Figure 23: The alphamask dialog.

The different texture layers are basically only RGBA images stacked on top of each other.
From this dialog you can control almost every aspect of them. To the right, there is the generation
interface. It consists of the following edit fields:

22

Max Height / Min Height If the corresponding height point is in this range, possibly
let this alphamask value be visible.

Max Angle/Min Angle If the angle between the normal of the landscape and the
up vector (0,0,1) falls between these values, possibly let
this alphamask value be visible.

Gaussian Radius There’s an option to apply a Gaussian blur filter to the final
image, after the generator has done it’s part. This indicates
how many pixels that should be used in this filter.

Use Gaussian Blur Indicates that the extra Gaussian blur filter should be ap-
plied.

There are two passes to the generation of the landscape. The first pass just goes through all
the pixels in the alpha mask and checks the landscape properties at that point (height, slope)
against the specified parameters and writes the appropriate pixel value at that point. The second
pass is a Gaussian Blur filter to compensate for any sharp edges in the resulting alphamask. To
actually make Ogier apply the the generated values, either press the button Recalc Layer to only
recalculate the current layer’s alphamask, or press the button Close & Recalc to close the dialog
and recalculate all layers. By recalculating a layer, all changes made with the paint tool are lost.

Besides the generation, there are several properties for each layer that can be adjusted.

Layer Desc Layer description is a pure editor related attribute, a short description of the
purpose of the layer, so that the user does not have to remember each layer’s
meaning based upon their numbers.

Texture Name Which texture to use in this layer. The browse button on the right will bring
up the standard Ogier texture browser so the user can select the appropriate
texture for the layer.

Texture Scale Specifies how many times the texture will repeat on each patch. 1 means that
the texture will be mapped to fit onto one patch.

Height/Width Indicates the dimensions of the underlying image. These values must be of the
form 2n. Changes to these values must be confirmed by pressing the button
Change Res. All pixel data in the current layer are lost by pressing Change
Res.

Paint in this Layer Selects the current layer to be the destination of the paint tool.
Draw Toggles wether this layer is visible in Ogier.

A.4 Paint Tool

The paint tool is activated by clicking on the paintbrush icon in the toolbar. By pressing the key
’p’ on the keyboard the user can bring up the paint tool dialog, see Fig. 24.

23

Figure 24: Paint tool parameter selection

The dialog is divided into three parts, brush, target and mode. The target part has the follow-
ing settings:

Terrain This indicates that when the paint tool is used it will modify the height of the
terrain.

Alpha This indicates that when the paint tool is used it will modify the alpha mask
of the layer selected in the alpha mask dialog.

The brush dialog has the following settings:

Intensity/Height In alpha mode this is the alpha value that will be used. In terrain mode it is
the fraction of the landscapes max height that will be used.

Hardness This indicates what the intensity profile of the brush should look like. The
profile is defined as (r/Range)Hardness.

Range This indicates the size of the brush in Ogier length units.

The different options in the mode section has somewhat different meanings depending on
whether terrain or alpha is selected as target. This is their meaning in terrain mode:

Normal The height of the landscape will be replaced by that of the brush.
Add The height value of the brush will be added to the landscape.
Subtract The height value of the brush will be subtracted from the landscape.
+ / - Left mouse button will activate add mode, right will activate subtract.
Intelligent Not defined for terrain, the tool will fall back on normal mode.
Smooth Slowly smoothes out the landscape in the area defined by the brush.

The meanings in alpha mode are:

24

Normal The alpha value of the landscape will be replaced by that of the brush.
Add The alpha value of the brush will be added to the landscape.
Subtract The alpha value of the brush will be subtracted from the landscape.
+ / - Left mouse button will activate add mode, right will activate subtract.
Intelligent The brush works as normal but will at the same time clear the layers above

the current layer.
Smooth Slowly smoothes out the alpha masks in the area defined by the brush.

It is also possible to specify a color that will be used when painting in the alphamasks by
clicking on the color picker.

When we return to the editor it’s now possible to paint heights or textures in the 3D view. The
tool is activated by holding down CTRL and the pressing the left mouse button. Unless the brush
is set to + / - the user can pick heights with the right mouse button. A white square indicates the
area where the painting will take place.

A.5 Import Dialog

Figure 25: The import dialog.

One can import height maps or layers from standard TGA pictures. The height map import
will suffer from the limited range of a 8 bit grayscale image. The ”With Maxheight” field specifies
the scale factor to use on the incoming height field. Each pixel is scaled with f MaxHeight/255.

25

A.6 Export Dialog

Figure 26: The export dialog.

This saves the height map and the layers as images, the height map as a 8-bit grayscale image
and the layers as RGBA images. The input dialog specifies a path and a prefix for the final files.
The final picture files will be appended with a UNIX suffix to identify them as heightmap and
layers.

Each height point will be rescaled to fit within a single byte, and will thus loose precision.

A.7 Hints and Tips
Since the engine divides the landscape into smaller patches and manages them individually, one
has to take this into consideration when choosing the texture sizes in Ogier. All the sizes refer to
the landscape as a single unit, i.e. no extra calculations are made to compensate for the patches.

E.g. if we create a landscape with the dimensions 129 by 129 height points and a layer with
texture size 64x64 and specify that each patch will be 33 by 33 height points, each patch will have
a texture size of 16x16.

Texture compression is disabled for the alphamasks, and thus the sizes of the texture does
matter a lot more than for the detail textures.

The actual tolerance used in the world compiler is T = MinTol
MinDist for the finest LOD level. It is

desirable to make T less than 1 or at least not too big since it will result in very coarse triangula-
tion.

26

