
Practical SPU Programming
in
God of War III
Jim Tilander, Vassily Filippov
Sony Santa Monica



Outline

• Motivation - why use the SPUs?

• Helping the simulation

• Helping the scene

• Helping the rendering

• Q&A



Motivation

• A typical game today contains three sections that feeds data 
into the next:

• Simulation of game, joypad input etc.

• Scene traversal.

• Render scene.

Simulation Scene RenderCPU0



Motivation

• A very typical optimization is to make the game render in a double buffered 
mode.

• This is possible because the GPU and the CPU can do parallel execution!

• This allows us to render a scene while the next one is prepared.

• Hides the cost of the simulation!

Simulation Scene

Render

Simulation Scene

Render

Frame n
Frame n + 1CPU0

GPU



Motivation

• Processors are becoming increasingly parallel.

• Let’s apply the same technique to the CPU parts.

• Our total frame time is now only bound only by the max of any of the three 
components, simulation, scene or render.

• This leads to combined processing of all three components in one frame!

Simulation

Scene

Render

Simulation

Scene

Render

Frame n - 1
Frame n
Frame n + 1

Simulation

Scene

Render

CPU0

CPU1

GPU



Motivation

• In a parallel system we have several 
types of computing resources.

• Easy to think about in terms of one 
main CPU.

• Easy to think about one main GPU.

• Bound by one of them.

Main 
CPU

Main 
GPU



Motivation

• If any of the two parts run too 
slow, offload tasks onto the helper 
CPUs.

• Continue doing this until the whole 
system runs within frame.

• When it runs within frame, we are 
done!

Main 
CPU

Main 
GPU

Helper 
CPU



The PS3

• Helper CPUs consists of 6 SPU 
general purpose processors.

• Have an affinity towards math 
operations.

• 256kb memory limitation.

Main 
CPU

Main 
GPU

SPU SPU

SPU SPU

SPU SPU



SPU is not a co-processor

• The SPU is not a coprocessor.

• Full general purpose processor.

• Operates independently from the other processors.

• You can lift PPU code straight over by bracketing it with DMA 
calls.

• They are fast enough to make this strategy work.



The SPU is fast.

• Actually, it’s super fast.

• With a little help it can run code at unbelievable speeds.

• Manual optimization can use use the potential 48x speedup of 
the architecture to the fullest (compiler never comes close).

• Memory is nearby.

• Leaves us to worry less about the actual computation on the 
SPU.



Can still win with slow SPU

• Reduce total time of the frame.

• Frame limited by max(CPU, GPU).

• Move parts to SPU.

• Even a slow SPU job can be a net win.

GPU

CPU

CPU Bound

GPU

CPU

GPU Bound



SPU == PPU

• Keep the code compilable on both platforms with minimal 
changes. 

• Limit the memory behavior on the PPU.

• Swap DMA calls for memcpy on PPU.

• Enable on the fly runtime switch between SPU and PPU 
version.



Our frame

• Normal processing with 
only PPU and RSX working.

• Processing is shifted, three 
frames in flight at the same 
time.

• Processing is fairly lengthy.

• Does not run within frame.

Frame n
Frame n + 1
Frame n + 2

Render

Scene SimulationPPU

GPU



Our frame

• Relies on SPUs to 
accelerate both RSX and 
PPU.

• Moving parts of all three 
systems to the SPU 
shortens the overall time.

• Now runs within frame.

Frame n
Frame n + 1
Frame n + 2

Render

Scene SimulationPPU

SPUs

GPU

Scene

Simulation

Render



The On Screen Profiler



The On Screen Profiler

• Both the PPU and SPU profilers 
are in sync.

• Allows for easy identification of 
parallel tasks.

• We can verify after the fact that 
something runs in parallel.



Systems on the SPU

• Animation

• Cloth

• Collision

• Procedural textures

• Culling

• Shadows

• Push buffer 
generation

• Meta tasks

• Geometry 
conditioning

• Sound

Simulation Scene Render



Offloading the Simulation



Titans

• One of our big ticket things in the 
game are Titans.

• Large scale creatures that move. 
Essentially moving levels.

• Quickly became apparent collision 
for the Titans were a bottleneck.

• Starting to move tasks onto the 
SPU.



Titans

• Bracketed PPU code with DMA calls 
and recompiled for SPU.

• Single buffered implementation.

• One look at the profiler shows us 
that no more optimizations are 
necessary.

• Still tons of performance on the 
table.

DMA Stalls

CPU Processing
One collision job



Titans

• We provide tech to artists and 
designers.

• Sometimes they run with it to places 
we never imagined.

• Moving ropes are “titans” from the 
engine’s point of view.



Cloth simulation

• Kratos has a short loin cloth.

• Enemies has various pieces of cloth.

• Independent jobs, naturally parallel.

• Fire and forget jobs, we can figure out early what we need for 
calculation and don’t need the results until render.



Cloth simulation

• One job per cloth simulation.

• Run this wide (5 SPU).

• Job is dominated by processing.

• Data volume is very low.

• Simply lifting over a PPU version 
with DMA calls begin/end.

Processing

One cloth job

DMA stalls



Offloading the Scene traversal



Culling

• Simple frustum checks against bound spheres.

• Traverses the list of all potential models.

• Produces visibility bits.

• Processes both frustum and occlusion checks at the same 
time.

• Highly suited for the SPU.



Culling

• Still got PPU parts, only the heavy lifting is on the SPU.

• Occluder selection, visibility bit processing is still on the PPU.



Push buffer generation

• Generate pushbuffer commands to 
set vertex buffers, shader constants 
and textures.

• Pruning of state redundancy.

• A large gather operation with a 
large amount of pointer to pointer 
chasing.

• Can easily swamp the PPU with L2 
misses.

Meshes in 
memory

SPU

SPU

SPU

SPU

SPU

Push buffer 
contents

01000100

01001100

01000100

01011100

01000100

01010000

01001100

01000100

01010000

01001100

01011100

01011100



Push buffer generation

• Each SPU fetches a small group of 
model references (one batch) at a 
time.

• Double buffer DMA, fetch model B 
while processing model A.

• Masked memory access cost.

Meshes in 
memory

SPU

SPU

SPU

SPU

SPU

Push buffer 
contents

01000100

01001100

01000100

01011100

01000100

01010000

01001100

01000100

01010000

01001100

01011100

01011100



Push buffer generation
• Adapted the PPU version to handle 

interleaved DMA.

• The SPU version is also the PPU 
version!

• In debug mode we can switch to the 
PPU version on the fly. 

• PPU version still useful for handling 
debug-jobs too large for the 
memory on the SPU (e.g. very large 
shaders).

Meshes in 
memory

SPU

SPU

SPU

SPU

SPU

Push buffer 
contents

01000100

01001100

01000100

01011100

01000100

01010000

01001100

01000100

01010000

01001100

01011100

01011100



Push buffer generation

• We run this final generation wide on 
5 SPUs. 

• Allocate a chunk of memory from 
the pushbuffer.

Meshes in 
memory

SPU

SPU

SPU

SPU

SPU

Push buffer 
contents

01000100

01001100

01000100

01011100

01000100

01010000

01001100

01000100

01010000

01001100

01011100

01011100



Push buffer generation

• We have 5 SPUs all trying to allocate 
memory from the same pushbuffer.

• Synchronization done through 
mfc_getllr and mfc_putllr. 

• Bypasses regular DMA, goes through 
the atomic unit instead.

• Should be your staple 
synchronization mechanism, fast and 
no OS overhead.



Offloading the GPU



Geometry processing

• Various techniques to offload the GPU (post processing, 
vertex processing, software rasterizers).

• We’ve focused on offloading the cost of the opaque pass.

• Majority of this cost comes from vertex processing and 
lighting.

• Moved both over to the SPU.



Geometry processing

• We pass all our vertices through the SPUs to be pre-
conditioned for the GPU.

• A special purpose job handles various tasks to help the 
GPU.

• Relies heavily on the SDK library EDGE.



Geometry processing

• What is EDGE?

• Geometry processing library available to all PS3 developers.

• Highly optimized SPU code.

• Easy integration, you still control main().

• Can greatly improve your performance!



Geometry processing

• One job per drawcall.

• Typical frame holds about 3000 geometry 
jobs.

• Most of our vertex shader is in here.

• Augmented lighting calculations.

• The one place where we’ve optimized 
heavily!

Decompress

Skinning

Culling

Generate Normals

Lighting code

Compress to RSX



Color correction

• Run as a post effects pass to give a certain (cinematic) look to 
a scene.

• Basically just do a RGB lookup in a cube map for each pixel on 
the screen.

• For dynamic effects we want to generate the cube map.

• How do we generate the cube map?



Color correction

• Kick a SPU job early on to generate a cube map based on 
parametric input.

• Algorithm involves a lot of if statements, harder to do 
efficiently on the GPU.

• Simple lift of code from PPU.

• Job is dominated by processing, single buffered DMA.



In closing



Go parallel

• You must use the parallel nature of the machine.

• Do not special case the SPU, it is a general purpose processor.

• Offload from the currently bound system.



No premature optimizations!

• Focus on user experience.

• Optimize as needed. Really.



Measure speed

• Be scientific, measure before you jump! The on screen profiler 
is your first tool.

• Start with a simple implementation that might seem non 
optimal.

• Always keep the PPU version! Invaluable for debugging.

• Remember that the SPU is faster than you think.



Q&A!


