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Motivation

• A typical game today contains three sections that feeds data 
into the next:

• Simulation of game, joypad input etc.

• Scene traversal.

• Render scene.
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Motivation

• A very typical optimization is to make the game render in a double buffered 
mode.

• This is possible because the GPU and the CPU can do parallel execution!

• This allows us to render a scene while the next one is prepared.

• Hides the cost of the simulation!
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Motivation

• Processors are becoming increasingly parallel.

• Let’s apply the same technique to the CPU parts.

• Our total frame time is now only bound only by the max of any of the three 
components, simulation, scene or render.

• This leads to combined processing of all three components in one frame!
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Motivation

• In a parallel system we have several 
types of computing resources.

• Easy to think about in terms of one 
main CPU.

• Easy to think about one main GPU.

• Bound by one of them.
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Motivation

• If any of the two parts run too 
slow, offload tasks onto the helper 
CPUs.

• Continue doing this until the whole 
system runs within frame.

• When it runs within frame, we are 
done!
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The PS3

• Helper CPUs consists of 6 SPU 
general purpose processors.

• Have an affinity towards math 
operations.

• 256kb memory limitation.
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SPU is not a co-processor

• The SPU is not a coprocessor.

• Full general purpose processor.

• Operates independently from the other processors.

• You can lift PPU code straight over by bracketing it with DMA 
calls.

• They are fast enough to make this strategy work.



The SPU is fast.

• Actually, it’s super fast.

• With a little help it can run code at unbelievable speeds.

• Manual optimization can use use the potential 48x speedup of 
the architecture to the fullest (compiler never comes close).

• Memory is nearby.

• Leaves us to worry less about the actual computation on the 
SPU.



Can still win with slow SPU

• Reduce total time of the frame.

• Frame limited by max(CPU, GPU).

• Move parts to SPU.

• Even a slow SPU job can be a net win.
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SPU == PPU

• Keep the code compilable on both platforms with minimal 
changes. 

• Limit the memory behavior on the PPU.

• Swap DMA calls for memcpy on PPU.

• Enable on the fly runtime switch between SPU and PPU 
version.



Our frame

• Normal processing with 
only PPU and RSX working.

• Processing is shifted, three 
frames in flight at the same 
time.

• Processing is fairly lengthy.

• Does not run within frame.
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Our frame

• Relies on SPUs to 
accelerate both RSX and 
PPU.

• Moving parts of all three 
systems to the SPU 
shortens the overall time.

• Now runs within frame.
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The On Screen Profiler



The On Screen Profiler

• Both the PPU and SPU profilers 
are in sync.

• Allows for easy identification of 
parallel tasks.

• We can verify after the fact that 
something runs in parallel.



Systems on the SPU

• Animation

• Cloth

• Collision

• Procedural textures

• Culling

• Shadows

• Push buffer 
generation

• Meta tasks

• Geometry 
conditioning

• Sound
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Offloading the Simulation



Titans

• One of our big ticket things in the 
game are Titans.

• Large scale creatures that move. 
Essentially moving levels.

• Quickly became apparent collision 
for the Titans were a bottleneck.

• Starting to move tasks onto the 
SPU.



Titans

• Bracketed PPU code with DMA calls 
and recompiled for SPU.

• Single buffered implementation.

• One look at the profiler shows us 
that no more optimizations are 
necessary.

• Still tons of performance on the 
table.
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Titans

• We provide tech to artists and 
designers.

• Sometimes they run with it to places 
we never imagined.

• Moving ropes are “titans” from the 
engine’s point of view.



Cloth simulation

• Kratos has a short loin cloth.

• Enemies has various pieces of cloth.

• Independent jobs, naturally parallel.

• Fire and forget jobs, we can figure out early what we need for 
calculation and don’t need the results until render.



Cloth simulation

• One job per cloth simulation.

• Run this wide (5 SPU).

• Job is dominated by processing.

• Data volume is very low.

• Simply lifting over a PPU version 
with DMA calls begin/end.
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Offloading the Scene traversal



Culling

• Simple frustum checks against bound spheres.

• Traverses the list of all potential models.

• Produces visibility bits.

• Processes both frustum and occlusion checks at the same 
time.

• Highly suited for the SPU.



Culling

• Still got PPU parts, only the heavy lifting is on the SPU.

• Occluder selection, visibility bit processing is still on the PPU.



Push buffer generation

• Generate pushbuffer commands to 
set vertex buffers, shader constants 
and textures.

• Pruning of state redundancy.

• A large gather operation with a 
large amount of pointer to pointer 
chasing.

• Can easily swamp the PPU with L2 
misses.
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Push buffer generation

• Each SPU fetches a small group of 
model references (one batch) at a 
time.

• Double buffer DMA, fetch model B 
while processing model A.

• Masked memory access cost.
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Push buffer generation
• Adapted the PPU version to handle 

interleaved DMA.

• The SPU version is also the PPU 
version!

• In debug mode we can switch to the 
PPU version on the fly. 

• PPU version still useful for handling 
debug-jobs too large for the 
memory on the SPU (e.g. very large 
shaders).
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Push buffer generation

• We run this final generation wide on 
5 SPUs. 

• Allocate a chunk of memory from 
the pushbuffer.
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Push buffer generation

• We have 5 SPUs all trying to allocate 
memory from the same pushbuffer.

• Synchronization done through 
mfc_getllr and mfc_putllr. 

• Bypasses regular DMA, goes through 
the atomic unit instead.

• Should be your staple 
synchronization mechanism, fast and 
no OS overhead.



Offloading the GPU



Geometry processing

• Various techniques to offload the GPU (post processing, 
vertex processing, software rasterizers).

• We’ve focused on offloading the cost of the opaque pass.

• Majority of this cost comes from vertex processing and 
lighting.

• Moved both over to the SPU.



Geometry processing

• We pass all our vertices through the SPUs to be pre-
conditioned for the GPU.

• A special purpose job handles various tasks to help the 
GPU.

• Relies heavily on the SDK library EDGE.



Geometry processing

• What is EDGE?

• Geometry processing library available to all PS3 developers.

• Highly optimized SPU code.

• Easy integration, you still control main().

• Can greatly improve your performance!



Geometry processing

• One job per drawcall.

• Typical frame holds about 3000 geometry 
jobs.

• Most of our vertex shader is in here.

• Augmented lighting calculations.

• The one place where we’ve optimized 
heavily!
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Color correction

• Run as a post effects pass to give a certain (cinematic) look to 
a scene.

• Basically just do a RGB lookup in a cube map for each pixel on 
the screen.

• For dynamic effects we want to generate the cube map.

• How do we generate the cube map?



Color correction

• Kick a SPU job early on to generate a cube map based on 
parametric input.

• Algorithm involves a lot of if statements, harder to do 
efficiently on the GPU.

• Simple lift of code from PPU.

• Job is dominated by processing, single buffered DMA.



In closing



Go parallel

• You must use the parallel nature of the machine.

• Do not special case the SPU, it is a general purpose processor.

• Offload from the currently bound system.



No premature optimizations!

• Focus on user experience.

• Optimize as needed. Really.



Measure speed

• Be scientific, measure before you jump! The on screen profiler 
is your first tool.

• Start with a simple implementation that might seem non 
optimal.

• Always keep the PPU version! Invaluable for debugging.

• Remember that the SPU is faster than you think.



Q&A!


