

Cell Powered Games
Jim Tilander
Lucasarts

Takeaways
● Some insights into CELL games development.
● Are new languages the answer?

Exciting times
● Increased processing power
● Multicore is now standard
● Memory systems slowly catching up

CELL
● Main memory bandwidth (20GB/s)
● Programmable LS
● 6 cycle LS
● Unified vector registers

Movies
● Simulation is key

– Complex motion
● Games have been the kid brother
● Scaled simulations can be transitioned to

games
● Catching up (unification)

Simulations right now in games
● Cloth
● Rigid body physics
● Soft body physics (FEM)
● Fluids and gas
● Hair
● Motion driven animation
● Artificial Intelligence

Current strategies
● Large legacy non CELL codebases
● Move system by system to take advantage of

the CELL.
● Time consuming
● Error prone
● Large changes often necessary to ... straighten

out the data structures.

Current strategies cont.
● Go wide
● Schedule individual components
● Poor intra component parallelism.

Rethinking the algorithm
● Example: visibility culling
● Spatial partitioning, make sure it's a win
● Consider the worst case scenario
● Perhaps faster to just compute all items

regardless

Taking a look at the code...
● C's motto “a foot and a gun for everyone”
● C++ motto “an object and a shotgun for

everyone”
● A lot of abstract code written in a low level

language.

Code size
● When I say large, what do I mean?
● 15y ago: ~20 KLOC (1 floppy, 880kb)
● 3y ago: ~1 MLOC
● Today: 3+ MLOC

C++ code weaknesses
● No deep analysis of code (even alias doesn't

work)
● Rooted in C, foot + gun
● Easy to write race conditions and deadlocks
● I don't want to be friends with “eieio”
● Schrödinger's cat bugs are nasty

Is there help?
● Most problems stem from C++
● Why are we using it? (turns out C)
● C is just portable asm.
● Can we change the abstraction level?
● Can we change the language?

Extending the C++ language?
● Herb Sutter had the concur project (new

keywords to C++)
● OpenMP
● Codeplay's compiler + runtime

Moving up the alphabet
● L as in Lisp. Functional languages.
● Functional constructs like map/filter/reduce
● Control side effects
● ML only used for ML compilers

Data flow languages
● Easy to understand
● Wires are data flows, nodes are procedures.
● Maps well onto the SPUs
● An old concept (1966)
● (In)famous product is NI's LabVIEW (G, 1986).

Visual Basic for CELL?
● Visual interface to a dataflow language.
● Targeting non CELL programmers.
● SPU constraints can be build into the language.
● Visual debugging and single stepping.
● Race condition analysis, deadlock analysis

Why not switch?
● Writing a top notch compiler is hard!
● Writing top notch debuggers/profilers hard!
● Finding people with the right skills is hard!
● Writing C/asm is cool.

In closing...
● C++, C and asm will not go away tomorrow.
● New languages might open up a way for faster,

more reliable code on the SPUs which
ultimately will result in cooler, more fun games!

Thank you for listening!

My emails:

jim@tilander.org
jtilander@lucasarts.com

mailto:jim@tilander.org
mailto:jtilander@lucasarts.com

